If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-90=162
We move all terms to the left:
7x^2-90-(162)=0
We add all the numbers together, and all the variables
7x^2-252=0
a = 7; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·7·(-252)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*7}=\frac{-84}{14} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*7}=\frac{84}{14} =6 $
| v+345=607 | | -444+-20=-8(-7a+2) | | -18t+10=-12-2+-16t | | y-25=2y-84 | | 16=2w-46 | | 4x+2-69x+1)=7x+3 | | -444+-20=-8(-7a | | 4v+2=10 4v= | | 4(6x+3)+6(1-2x)=-18 | | Y’+100y=0 | | n+12/2=300 | | w−154=22 | | z+17=2z+16 | | 65+3x+67=180 | | 5w+5=1.5 | | 69=t−58 | | y+6.2+6.2=9.1-6.2 | | 887=y+523 | | r+2=-6 | | s=2s-4 | | 27y=22y-25 | | n+14=300 | | 8x+11=8x-2 | | 4=h-42 | | 2.50n+39=51.50 | | W=151=(2x+7) | | 20+3f=15f-20-20 | | 5x+80=13 | | 4=210c | | 6r2−10=−17 | | $2.50n+39=51.50 | | 165=h−724 |